On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:
общая лексика
фрагмент Оказаки (фрагмент ДНК при репликации)
общая лексика
антисвязывающий домен
Fab-фрагмент
Fab-область (антитела)
['frægmənt]
общая лексика
фрагмент
часть большого пакета данных или файла. Чем больше степень фрагментации дисковых файлов, тем медленнее осуществляется к ним доступ. Поэтому периодически необходимо запускать программу дефрагментации диска
фрагментировать
осколок
отрывок
побочный продукт поликонденсации
медицина
отломок
Смотрите также
существительное
[fræg'ment]
общая лексика
обломок
осколок
кусок
обыкн. обрывки
фрагмент
отрывок
обрывок
синоним
антоним
глагол
общая лексика
разваливаться
разламываться на куски
разбивать
разламывать
раздроблять
специальный термин
дезинтегрировать
Okazaki fragments are short sequences of DNA nucleotides (approximately 150 to 200 base pairs long in eukaryotes) which are synthesized discontinuously and later linked together by the enzyme DNA ligase to create the lagging strand during DNA replication. They were discovered in the 1960s by the Japanese molecular biologists Reiji and Tsuneko Okazaki, along with the help of some of their colleagues.
During DNA replication, the double helix is unwound and the complementary strands are separated by the enzyme DNA helicase, creating what is known as the DNA replication fork. Following this fork, DNA primase and DNA polymerase begin to act in order to create a new complementary strand. Because these enzymes can only work in the 5’ to 3’ direction, the two unwound template strands are replicated in different ways. One strand, the leading strand, undergoes a continuous replication process since its template strand has 3’ to 5’ directionality, allowing the polymerase assembling the leading strand to follow the replication fork without interruption. The lagging strand, however, cannot be created in a continuous fashion because its template strand has 5’ to 3’ directionality, which means the polymerase must work backwards from the replication fork. This causes periodic breaks in the process of creating the lagging strand. The primase and polymerase move in the opposite direction of the fork, so the enzymes must repeatedly stop and start again while the DNA helicase breaks the strands apart. Once the fragments are made, DNA ligase connects them into a single, continuous strand. The entire replication process is considered "semi-discontinuous" since one of the new strands is formed continuously and the other is not.
During the 1960s, Reiji and Tsuneko Okazaki conducted experiments involving DNA replication in the bacterium Escherichia coli. Before this time, it was commonly thought that replication was a continuous process for both strands, but the discoveries involving E. coli led to a new model of replication. The scientists found there was a discontinuous replication process by pulse-labeling DNA and observing changes that pointed to non-contiguous replication.